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Spin state crossovers in transition metal complexes can be
accompanied by magnetic hysteresis,1 and these bistable materials
have been actively pursued because of their potential applications
in magneto-thermal switching and information storage devices.2

However, while the magnetic signature of the bistability is well
established, the underlying structural causes, i.e., the nature of the
intermolecular interactions that generate the necessary cooperativity,
are not well understood.

Recently, magnetic hysteresis has been observed in a number of
molecular radicals,3 including the three 1,3,2-dithiazolyls1-3
(Chart 1).4-6 The bistability initially observed in TPDTA4 and
TDTA5 provided dramatic manifestations, particularly for TDTA,
of the coexistence over a wide temperature range of two solid state
structures, one based on diamagnetic dimers (S) 0), the other on
essentially paramagnetic radicals (S ) 1/2). In TPDTA the
mechanism of the phase interconversion was described in terms of
a tectonic plate slippage ofπ-stacked layers (Scheme 1),4 while
for TDTA a “domino cascade” of slipped radicalπ-stacks has been
suggested.6

Variable-temperature magnetic susceptibility measurements (ø)
on PDTA reveal a regime of bistability spanning 46 K, withTCV )
297(1) K andTCv ) 343(1) K (Figure 1).6 The similarity in the
magnetic response and in the temperature range and width to that
found for TDTA5 prompted us to consider a similar interconversion
pathway. To explore this possibility we have determined the crystal
structures of the high- and low-temperature (HT and LT) phases
of PDTA at 323 K,7 i.e., near the midpoint of the bistable region.
The HT phase was generated by heating a crystal of LT form to

85 °C for 5 min and then cooling the transformed crystal to 50°C
for data collection.

While the space group and cell dimensions of the two phases
are different,7 the appearances of the two structures, when viewed
down the stacking directions, are very similar. In both cases, the
PDTA molecules (radicals or dimers) are aligned head-to-tail into
chains running along [0,0,1] in the HT phase and along [0,1,0] in
the LT phase. In HT-PDTA, this arrangement affords rows of
radicals along [1,0,0], while in LT-PDTA the analogous rows run
parallel to the cell diagonal vector [0,1,1].

† University of Waterloo.
‡ University of California, Riverside.
§ University of Louisville.

Chart 1

Scheme 1

Figure 1. Magnetic susceptibility (ø) of PDTA as a function ofT (K).

Figure 2. Packing of HT-PDTA (above) and LT-PDTA (below), showing
lateral S- - -S and six-center S- - -N contacts.
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Closer inspection of the two structures reveals significant
differences. In the LT phase, all the molecules are coplanar with
the (1,0,0) plane. By contrast, in the HT form, the mean planes of
alternate radicals along [0,0,1], which are related by thec-glide,
are rotated clockwise and counterclockwise, so that they lie coplanar
with the (2,1,0) and (2,-1,0) planes, respectively.

The consequences of the alternating inclination of rings on
π-stacking in the HT phase is illustrated in Figure 3, which shows
a view of the (1,0,-1) plane, with slipped stacks of centrosymmetric
pairs of radicals linked laterally by six-center intermolecular
S- - -N contacts (d2 ) 3.000(5) Å). By contrast, an analogous view
of the stacking in the LT phase, i.e., perpendicular to the (0,1,0)
plane, reveals nearly superimposed stacks ofπ-dimers, with internal
S-S bondsd7 (3.341(2) Å) andd8 (3.295(2) Å) that quench the
spins of the radicals. As in the HT phase, lateral six-center S- - -N
bridges d3 and d4 (2.941(4) and 2.957(4) Å) bridge adjacent
radicals. In both phases, adjacent stacks of radical/dimer pairs are
out-of-register and bridged by close interstack S- - -S contacts (d1
) 3.546(4),d5 ) 3.370(2), andd6 ) 3.437(3) Å).

An understanding of the reversibility of the phase change and
the cooperative effects necessary to induce hysteresis in PDTA
emerges from a consideration of how the slipped stacks of the HT
structure evolve into nearly superimposed stacks of the LT form.
As in the case of TDTA, we invoke a domino cascade pathway
(Figure 4). The difference between the two systems is that in this
case it is the intermolecular S- - -S contacts that serve as hinges
on which the molecular plates swing. The trigger that sets off the
cooperative process in either direction is the cleavage of the six-
center S- - -N contacts. Once these bridges are broken, the two rings
are free to rotate (step A), up and down, with retention of inversion
symmetry, until they are realigned with new partners with which
they can form pairwise S- - -N contacts. This domino cascade allows
for the perfect interconversion of slipped and superimposed radical
π-stacks (step B). The subsequent formation of dimers, and doubling
of the cell repeat distance along the stacking direction, provide what
little enthalpy change there is in the overall sequence (step C). That
the dimers are not actually superimposed in LT-PDTA indicates

that some minor lateral slippage also occurs, but this is unlikely to
influence the energy barrier for the overall rearrangement.

Whether these dithiazolyl radical/dimer bistabilities will lead to
useful device applications remains to be seen.8 In the meantime,
the understanding that the present results provide of the molecular
design features necessary to induce hysteresis augurs well for the
development of new magnetically bistable materials based on
heterocyclic radicals.
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Figure 3. Stacking of radicals in the (1,0,-1) plane of HT-PDTA (above)
and of dimers in the (0,1,0) plane of LT-PDTA (below).

Figure 4. Domino cascade conversion of HT-PDTA to LT-PDTA,
involving cleavage of S- - -N bridges (A), plate rotation about S- - -S hinges
(B), and reformation of S- - -N bridges and dimerization (C).
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